Chirped soliton solutions for the generalized nonlinear Schrödinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order

نویسندگان

  • Houria Triki
  • K Porsezian
  • Philippe Grelu
چکیده

A generalized nonlinear Schrödinger equation with polynomial Kerr nonlinearity and non-Kerr terms of an arbitrarily higher order is investigated. This model can be applied to the femtosecond pulse propagation in highly-nonlinear optical media. We introduce a new chirping ansatz given as an expansion in powers of intensity of the light pulse and obtain both linear and nonlinear chirp contributions associated with propagating optical pulses. By taking the cubic-quinticseptic-nonic nonlinear Schrödinger (NLS) equation with seventh-order non-Kerr terms as an example for the generalized equation with Kerr and non-Kerr nonlinearity of arbitrary order, we derive families of chirped soliton solutions under certain parametric conditions. The solutions comprise bright, kink, anti-kink, and fractional-transform soliton solutions. In addition, we found the exact soliton solution for the model under consideration using a new ansatz. The parametric conditions for the existence of chirped solitons are also reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Dark Solitary Wave Solutions for the Higher Order Nonlinear Schrödinger Equation with Cubic-quintic Terms

By means of the coupled amplitude-phase method we find analytical dark solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic terms describing the effects of quintic nonlinearity on the ultra-short (femtosecond) optical soliton propagation in non-Kerr media. The dark solitary wave solution exists even for the coefficients of quintic terms much larger than...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Bäcklund Transformation and N-Soliton Solutions for the Cylindrical Nonlinear Schrödinger Equation from the Diverging Quasi-Plane Envelope Waves

This paper investigates a cylindrical nonlinear Schrödinger (cNLS) equation, which describes the cylindrically diverging quasi-plane envelope waves in a nonlinear medium. With the Hirota method and symbolic computation, bilinear form and N-soliton solutions in the form of an Nth-order polynomial in N exponentials are obtained for the cNLS equation. By means of the properties of double Wronskian...

متن کامل

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms

We consider a high-order nonlinear Schrödinger (HNLS) equation with thirdand fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016